Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 100(3): 684-699.e6, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30269988

RESUMO

A wealth of data has elucidated the mechanisms by which sensory inputs are encoded in the neocortex, but how these processes are regulated by the behavioral relevance of sensory information is less understood. Here, we focus on neocortical layer 1 (L1), a key location for processing of such top-down information. Using Neuron-Derived Neurotrophic Factor (NDNF) as a selective marker of L1 interneurons (INs) and in vivo 2-photon calcium imaging, electrophysiology, viral tracing, optogenetics, and associative memory, we find that L1 NDNF-INs mediate a prolonged form of inhibition in distal pyramidal neuron dendrites that correlates with the strength of the memory trace. Conversely, inhibition from Martinotti cells remains unchanged after conditioning but in turn tightly controls sensory responses in NDNF-INs. These results define a genetically addressable form of dendritic inhibition that is highly experience dependent and indicate that in addition to disinhibition, salient stimuli are encoded at elevated levels of distal dendritic inhibition. VIDEO ABSTRACT.


Assuntos
Dendritos/fisiologia , Interneurônios/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Dendritos/química , Interneurônios/química , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos
2.
J Physiol ; 592(19): 4155-64, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24879871

RESUMO

Acetylcholine is a crucial neuromodulator for attention, learning and memory. Release of acetylcholine in primary sensory cortex enhances processing of sensory stimuli, and many in vitro studies have pinpointed cellular mechanisms that could mediate this effect. In contrast, how cholinergic modulation shapes the function of intact circuits during behaviour is only beginning to emerge. Here we review recent data on the recruitment of identified interneuron types in neocortex by cholinergic signalling, obtained with a combination of genetic targeting of cell types, two-photon imaging and optogenetics. These results suggest that acetylcholine release during basal forebrain stimulation, and during physiological recruitment of the basal forebrain, can strongly and rapidly influence the firing of neocortical interneurons. In contrast to the traditional view of neuromodulation as a relatively slow process, cholinergic signalling can thus rapidly convey time-locked information to neocortex about the behavioural state of the animal and the occurrence of salient sensory stimuli. Importantly, these effects strongly depend on interneuron type, and different interneuron types in turn control distinct aspects of circuit function. One prominent effect of phasic acetylcholine release is disinhibition of pyramidal neurons, which can facilitate sensory processing and associative learning.


Assuntos
Acetilcolina/metabolismo , Aprendizagem por Associação/fisiologia , Interneurônios/metabolismo , Neocórtex/metabolismo , Animais
3.
Biomed Opt Express ; 4(12): 2869-79, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24409387

RESUMO

The use of wavefront shaping to generate extended optical excitation patterns which are confined to a predetermined volume has become commonplace on various microscopy applications. For multiphoton excitation, three-dimensional confinement can be achieved by combining the technique of temporal focusing of ultra-short pulses with different approaches for lateral light shaping, including computer generated holography or generalized phase contrast. Here we present a theoretical and experimental study on the effect of scattering on the propagation of holographic beams with and without temporal focusing. Results from fixed and acute cortical slices show that temporally focused spatial patterns are extremely robust against the effects of scattering and this permits their three-dimensionally confined excitation for depths more than 500 µm. Finally we prove the efficiency of using temporally focused holographic beams in two-photon stimulation of neurons expressing the red-shifted optogenetic channel C1V1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...